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Abstract—Federated Learning (FL) is a distributed machine
learning technique where multiple devices can collaboratively
train a model without sharing their data. As a result, FL
ensures distinct privacy benefits compared to centralized training
approaches. However, despite its benefits, FL. remains susceptible
to reverse-engineering attacks that can uncover sensitive informa-
tion about the training data from the local updates sent by each
participant. To address this issue, we propose a framework for
securely and efficiently aggregating the results of FL on multiple
devices. We compare and evaluate the performance of two tech-
niques, Homomorphic Encryption (HE) and Secure Multiparty
Computation (SMPC), to determine the best method that allows
devices to share their learning results without revealing their
raw local data. Ultimately, we propose using SMPC protocol
as the most effective solution to secure FL. OQur framework
is experimentally evaluated, and its effectiveness in terms of
security, efficiency, and accuracy is demonstrated.

Index Terms—Wireless Networks; Federated Learning; HE;
SMPC.

I. INTRODUCTION

EDERATED Learning is a method of training machine

learning models on decentralized data, where the data is
distributed across multiple devices or clients, and the model
is trained locally on each device, with the updates being
aggregated centrally to update the global model. This approach
allows for improved privacy and data security as the raw data
never leaves the device and can also handle large and diverse
datasets [1]- [12]. FL provides unique privacy advantages com-
pared to centralized training methods. However, FL. remains
susceptible to reverse-engineering attacks that can uncover
sensitive information about the training data from the local
updates sent by each participant. To develop a more secure FL
framework, it is important to consider various techniques and
methods that can protect against reverse-engineering attacks
and prevent the extraction of sensitive information from locally
computed updates. One possible approach is to use HE, which
allows computations to be performed on ciphertext, keeping
the data encrypted at all times. Another technique is SMPC
which enables multiple parties to jointly compute a function
over their private inputs without revealing them to each other
[13].
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Recently, there has been a growing concern about preserving
privacy in FL training. Efforts have been made to address
this issue and develop methods for protecting the data privacy
used in FL training. In [14], Zheng et al. proposed a system
design that protects the privacy of individual model updates
during the FL process; the proposed system incorporates a
lightweight encryption and aggregation, and the ability to
handle drop-out clients without affecting their participation
in future rounds. In [15], Zhang et al. proposed a system
design that includes a technique to eliminate the identity
of individuals model updates by adding random Gaussian
noise during the secure aggregation process. This ensures
that the identity of each individual is protected and not
revealed during the aggregation of model updates. In [16],
Zhang et al. proposed a system design for FL that enables
the implementation of a verifiable privacy-preserving FL by
utilizing a lightweight pseudorandom generator, which allows
for a secure and efficient way to protect the privacy of
individual model updates during the learning process. Finally,
in [17], Wibawa et al. proposed a novel method for training
a convolutional neural network (CNN) to detect COVID-
19 using HE and FL. The authors proposed using FL and
HE to train a CNN to detect COVID-19 without exposing
sensitive patient data. They evaluated the performance of
the proposed method and showed that it is able to achieve
comparable accuracy to traditional training methods while
preserving privacy. In this paper, we present a comparison
between two encryption techniques and highlight the benefits
of using SMPC as a lightweight method for preserving privacy
in FL. This approach does not rely on complex cryptographic
primitives and does not introduce additional noise. The work
presented in this paper is distinct from previous works in the
field as it specifically focuses on this aspect of comparing two
well encryption techniques, ¢.e., HE and SMPC, in the context
of FL. In this paper, we propose a framework for securely and
efficiently aggregating the results of FL. on multiple devices.
We compare and evaluate the performance of two techniques,
HE and Secure Multiparty Computation (SMPC), to determine
the best method for allowing devices to share their learning
results without revealing their raw data. Our framework is
experimentally evaluated, and its effectiveness in terms of



security, efficiency, and accuracy is demonstrated.

The structure of this paper is as follows: In Section II,
we provide background information. Section III outlines our
system model. In Section IV, we detail the implementation
and evaluation of our proposed framework. Lastly, Section V
concludes the paper.

II. BACKGROUND
A. Homomorphic encryption

HE is a form of encryption that allows computations to be
performed on ciphertext, producing an encrypted result which,
when decrypted, matches the result of the operations as if they
had been performed on plaintext. This can be useful when
sensitive data needs to be processed without being exposed
in plaintext form. The mathematical definition of HE can be
represented by the following equation:

c1 = E(my);ca = E(ma) (1)
D(c1 % c2) = my * mo 2)
D(ci + ¢c2) = my + ma, 3

where E is the encryption function, D is the decryption
function, m; and my are plaintext messages.
There are three different types of HE:

1) Paillier encryption scheme: It is based on the mathe-
matical equation ¢ = g™ * ™ mod n?, where ”g” is a
generator, “m” is the plaintext, ’r” is a random number,
”n” is a large prime number, and “’c” is the ciphertext.
This scheme allows for homomorphic addition of plain-
texts, but not multiplication.

2) ElGamal encryption scheme: It is based on the mathe-
matical equation ¢ = (¢", mx*h"), where ”g” is a gener-
ator, ’r”’ is a random number, "h” is the public key, "m”
is the plaintext, and “c” is the ciphertext. This scheme
allows for homomorphic addition and multiplication of
plaintexts.

3) Fully Homomorphic Encryption (FHE) scheme: It is a
type of homomorphic encryption that allows for any
mathematical operation to be performed on the cipher-

text.

B. Secure Multi-Party Computation

SMPC allows multiple parties to jointly compute a function
over their private inputs, without revealing any additional
information about their inputs to the other parties. SMPC pro-
tocols are typically built using a combination of cryptographic
techniques such as secret sharing, and zero-knowledge proofs.
These protocols enable multiple parties to compute a function
over their private inputs in such a way that the output is the
same as if the function was computed on the plaintext inputs,
but without revealing anything about the plaintext inputs.

III. SYSTEM MODEL

In this section, we describe the system model. First, we
describe HE in the FL context. Then, we describe SMPC in
the FL context.

A. HE in FL

HE can be useful in the context of FL, as it allows the
participating devices or nodes to perform computations on
their encrypted models without revealing their underlying
values to the other parties. FL training using HE includes the
following steps:

1. Each agent A; encrypts its model parameters W; and b;
using HE scheme such as Paillier or ElGamal (see step 13 in
Algorithm. 1).

2. The agents send the encrypted model parameters
(E(W;)) and (E(b;)) to a server.

3. The server performs the following steps for each round
of FL training:

1) The server receives the encrypted model parameters
(E(W;)) and (E(b;)) from all agents (see steps 4 to
7 in Algorithm. 1).

2) The server performs the computations on the encrypted
model parameters (E(W;)) and (E(b;)), such as gradi-
ent updates, using HE operations, such as homomorphic
addition, multiplication, and scalar multiplication. Then
the server sends the updated model parameters back to
the agents to initiate another round of training (see steps
7 to 9 in Algorithm. 1).

4. Each agent A; receives the updated model parameters
and uses them to update its local model W; and b;. This is
repeated for a maximum number of rounds 7;,4,. Algorithm
1 shows the pseudo-algorithm for FL using HE.

B. SMPC in FL

In the context of FL, the goal of SMPC is to enable multiple
agents (e.g., devices or nodes in an FL system) to jointly
compute a function over their private inputs, without revealing
their inputs to the other parties. This can be formalized using
the following equation:

f($17.'172,...7$n):SMPC(f,ZE]_,J}Q,...,J}n), (4)

where f is the function being computed, x1, x2, . . . , T, are the
private inputs of the parties, and SMPC represents the secure
multi-party computation protocol that enables the computation
of f over the inputs while maintaining their privacy.

FL training using SMPC includes the following steps:

1. Each agent A; encrypts its model parameters W, and
b; using a secure multi-party protocol such as Secure Multi-
Party Computation of Sums (SMPCS) or Secure Multi-Party
Computation of Inner Product (SMPCIP) (see step 16 in
Algorithm. 2).

2. The agents send the encrypted model parameters
(E(W;)) and (E(b;)) to the secure aggregators (see step 16
in Algorithm. 2).

3. Each secure aggregator, represented by s;, where 1 < ¢ <
N, receives one of the shares of the local model updates from
each agent. The global model is then updated by aggregating
the received encrypted updates, and the updated global model
is sent to the server (see steps 4 to 10 in Algorithm. 2).



Algorithm 1: Pseudo-algorithm for Federated Learn-
ing using HE

Algorithm 2: Pseudo-algorithm for Federated Learn-
ing using SMPC

1 Input: Data and model parameters of each agent

Output: Updated model parameters for each agent

Initial Phase: Generate a public-private key pair
(pk, sk) using a secure key generation algorithm and
send the public key pk to the agents along with the
initial global model parameters W and b,

4 for r <1 to ryq, do

5 for each agent A in A, do

6 W1 4 < AgentUpdate(r,A)[0]

by1.4 < AgentUpdate(r,A)[1]

W N

7 end
1 A,

8 Wia=x 22:1 Wiiia

1 ”
brp1= A, ZA:l bf«+1,A
W1 Do (Weyy)
bry1 < Dgp(bSyq)
Send W,.;; to each agent
Send b, to each agent

9 end
10 AgentUpdate(A,r): // Each agent executes this
function
for each Local epoch e in E do
1 WT,A <*\Nr - nv.fA(Wr)
bT,A W, — nva(br)
12 end
13 ;,A <—Ep;€(WT7A)
b4 Epilbra)
return W 4 and by 4

4. The server decrypts the model parameters and starts a
new round until the desired level of accuracy is achieved or a
stopping criterion is met (see step 11 in Algorithm. 2).

Algorithm 2 shows the pseudo-algorithm for FL training
using SMPC.

IV. IMPLEMENTATION

In this section, we first analyze the performance of our
proposed framework. Then, we describe our observations on
the two techniques.

A. Performance evaluation

Our proposed FL framework is implemented using Pysyft
[18], is a library for secure and private deep learning and
Pytroch [19]. Our proposed FL framework includes a cen-
tralized server that distributes partitions of a main dataset to
multiple agents/clients. In this study, we use the WSN-DS
dataset for intrusion detection in wireless sensor networks,
which contains a reasonable number of data samples. The
WSN-DS dataset was created using the LEACH protocol, a
popular hierarchical routing protocol in WSNs. The dataset
was generated by collecting data from Network Simulator 2
(NS-2) and extracting 23 features. Our goal is to create a
global model that can accurately classify each sample in the

-

Input: Data and model parameters of each agent

Output: Updated model parameters for each agent

Initial Phase: Generate a fixed finite field (i.e., a set
of integers from 0 to P — 1 for a prime number P)
for all computations to take place along with the
initial the global model parameters Wy and bg

W N

4 for r <1 to ryq, do
5 for each Secure Aggregator i in N do
6 for each agent A in A, do
7 W' 4 « AgentUpdate(r,A)[0]
b1 4 < AgentUpdate(r,A)[1]
8 end
c,t A, [N
9 W= %T Zﬁ:l W, a
biif A% EA;I blf-il,A
10 end
c N ¢,
11 1= 23\[:1 Wi
b= i b
Wy41 <D(Decode(Ws., ))
b, 41 <D(Decode(by, ))
Send W,.4; to each agent
Send b, to each agent
12 end
13 AgentUpdate(A,r): // Each agent executes this

function

for each Local epoch e in E do
14 WﬁA <—W7- — UVfA(Wr)

br,A W, — nva(br)

15 end
16 W¢ 4 <E(Encode(W,. A))

v.a <E(Encode((by, A))

Split Wy, into N shares

Split W 4 into IV shares

return Wf_’i‘ and bfnf4

dataset into one of the following five classes: Normal behavior,
Constant jamming, Random jamming, Deceptive jamming, or
Reactive jamming. We perform experiments involving HE,
SMPC, and regular FL (vanilla FL) without encryption. In the
first case (¢.e., HE), once the local training is done, the model
parameters are encrypted using HE (a key size of 64 bits) and
then sent to the server. The server uses fed-avg to aggregate the
encrypted model parameters. Once done, the model parameters
are sent back to each agent, and the training process continues
until the desired level of accuracy is achieved or a stopping
criterion is met. In the second case (¢.e., SMPC), the model
parameters were encrypted using a secure multi-party protocol
and then sent to secure aggregators; each secure aggregator
receives one of the shares of the local model updates from
each agent. Next, the global model is updated by combining
the encrypted updates received, and then the updated global
model is sent back to the server. The third case consists of a
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Fig. 1: Total time of FL process training between HE, SMPC, and vanilla FL for (a) binary classification and (b) Multi-class
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Fig. 2: Training Model losses of HE, SMPC, and vanilla FL. on WSN-DS dataset for (a) 25 rounds and (b) 50 rounds.

regular FL (vanilla FL) without the use of encryption.

In this study, we evaluated two distinct scenarios, one for
multi-class classification and one for binary classification.
We explored various combinations of the number of training
rounds (ranging from 10 to 50) and local epochs (varying
from 1 to 5). Figs. 1(a) and 1(b) show the total time of the
FL process between HE, SMPC, and vanilla FL. for binary
and multi-class classification, respectively. The total training
time includes total tensor encryption and decryption time and
aggregation time. In both cases, SMPC results in faster training
times when compared to using HE for FL. Furthermore, the
time required for SMPC is almost comparable to the time
required for traditional FL, indicating that privacy-aware FL

can be performed without significant additional computational
overhead using SMPC. This makes SMPC a viable option for
privacy-preserving FL and is a significant advantage over other
methods such as HE, which have been shown to have longer
training times. Figs. 2(a) and 2(b) show the training Model
losses of HE, SMPC, and vanilla FL. on the WSN-DS dataset
for 25 rounds and 50 rounds, respectively. The loss decreases
and stabilizes for both models and participants, with close-
to-zero loss indicating successful learning from each other
without data sharing. To demonstrate that using SMPC does
not have a negative impact on the performance of the learning
model, we conduct experiments to measure the performance
metrics of accuracy, precision, recall, Fl-score, and training
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Fig. 3: Comparison of Number of Clients and Computational
Costs of SMPC

time (see Table. 1). We varied the number of clients from 2
to 4 clients and measured their performance metrics in Fig. 3.
The model achieved a 99% accuracy and F1 score with 69.99s
training time, which shows that SMPC can be used for privacy-
preserving FL. without sacrificing the model’s performance.

TABLE I: Performance metrics on the WSN-DS dataset

Scenarios Accuracy | Precision | Recall| F1

SMPC_Binary 0.99 0.99 0.99 0.99
FL_Binary 0.99 0.99 0.99 0.99
SMPC_Multi 0.99 0.99 0.99 0.99
FL_Multi 0.99 0.99 0.99 0.99

TABLE II: Performance metrics of our FL+SMPC and bench-
marks using the WSN-DS dataset

Methods Accuracy| F1score | Time (second)
NB 0.72 NA NA

MLP 0.7 NA NA
MLP+KSVM 0.94 NA NA

Adaboost 0.94 0.84 109

Gradient Boost (GB) 0.98 0.97 2880
FL+SMPC 0.99 0.99 69.99

The performance metrics on the WSN-DS dataset are used
to evaluate the effectiveness of the learning model. These met-
rics include accuracy, precision, recall, and Fl-score, which
are commonly used to evaluate the performance of a machine
learning model. These metrics provide information on the
ability of the model to correctly classify data points, the
proportion of correctly classified positive instances among all
positive instances, the proportion of correctly classified posi-
tive instances among all instances that were actually positive,
and the balance between precision and recall respectively.
The results of these metrics on the WSN-DS dataset give
an indication of the effectiveness of the learning model. The
results show that the use of SMPC does not negatively impact
the accuracy of the model when applied to the WSN-DS

dataset (see Table. 1). The model achieved a 99% accuracy and
F1 score in both scenarios. This shows that SMPC can be used
for privacy-preserving FL without sacrificing the performance
of the model in terms of accuracy. We have compared the
performance of SMPC with some recent Al-based solutions
(i.e., Naive Bayes (NB) [20], Multilayer Perceptron (MLP)
[21], MLP+Kernelized Support Vector Machine (KSVM) [22],
Adaboost [23], and Gradient Boost (GB) [23] ) using the same
WSN-DS dataset (see Table. 2). Our SMPC method achieved
the best results in the shortest training time.

B. Observations

o Execution Time: SMPC results in faster training times
by far when compared to using HE. Furthermore, the
time required for SMPC is almost comparable to the
time required for traditional FL, indicating that privacy-
aware FL can be performed without significant additional
computational overhead using SMPC.

« Single point of failure: One of the downsides of using
HE is the risk of a single point of failure. This refers
to the fact that the security of the entire system relies
on encryption and decryption keys, and if these keys are
compromised or lost, the entire system is compromised.
In contrast, SMPC is a method that allows multiple parties
to perform computations on their own encrypted data
while keeping the data private. As a result, SMPC does
not suffer from the problem of a single point of failure,
as the security of the system is distributed among the
different parties. This makes SMPC a more robust and
resilient option for privacy-preserving FL than HE.

o FL model performance: It is crucial to note that using
Secure SMPC for FL should not significantly impact the
performance of the learning model. While there may be
some slight degradation in performance due to the added
complexity of the SMPC protocol, the goal of SMPC is to
minimize this degradation as much as possible while still
providing privacy-preserving FL. Through our studies, we
have shown that SMPC can maintain similar performance
compared to traditional FL while providing better privacy
guarantees.

V. CONCLUSION

In this paper, we presented a comparison between two
encryption techniques and emphasized the importance of using
SMPC as a lightweight method for preserving privacy in FL
processes. The proposed SMPC protocol was presented as
the most effective solution. The effectiveness of the proposed
framework was experimentally evaluated in terms of security,
efficiency, and accuracy, and the results demonstrated its
effectiveness.
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