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Abstract—Advances in Artificial Intelligence (AI) provide new
capabilities to handle network routing problems. However, the
lack of up-to-date training data, slow convergence, and low
robustness due to the dynamic change of the network topology,
makes these AI-based routing systems inefficient. To address
this problem, Reinforcement Learning (RL) has been introduced
to design more flexible and robust network routing protocols.
However, the amount of data (i.e., state-action space) shared be-
tween agents, in a Multi-Agent Reinforcement Learning (MARL)
setup, can consume network bandwidth and may slow down the
process of training. Moreover, the curse of dimensionality of RL
encompasses the exponential growth of the discrete state-action
space, thus limiting its potential benefit. In this paper, we present
a novel approach combining Federated Learning (FL) with Deep
Reinforcement Learning (DRL) in order to ensure an effective
network routing in wireless environment. First, we formalize
the problem of network routing as a problem of RL, where
multiple agents that are geographically distributed train the
policy model in a fully distributed manner. Thus, each agent can
quickly obtain the optimal policy that maximizes the cumulative
expected reward, while preserving the privacy of each agent’s
data. Experiments results show that our proposed Federated
Reinforcement Learning (FRL) approach is robust and effective.

Index Terms—Network Routing; Federated Learning; Rein-
forcement Learning.

I. INTRODUCTION

The Internet of Things (IoT) paradigm has emerged as a
distributive technology that is giving rise to a plethora of
new services and applications. IoT connects multiple devices,
called objects, that perform and automate our daily life tasks.
The IoT development has gained considerable momentum over
the past few decades. The need for routing optimization in
such environment has become prominent, especially with the
increase in the network traffic volume, Quality of Service
(QoS) demand, and security requirements [1], [2]. The current
network routing schemes such as Open Shortest Path First
(OSPF), are facing obstacles to satisfy the increasing demand
of today’s network in terms of high speed and low latency.

To address this issue, several state-of-the-art network-based
routing schemes have been proposed by integrating Artificial
Intelligence (AI) techniques. These techniques have gained
considerable momentum over the past few decades, they be-
come efficient to solve complex problems, including network
routing. Mao et al. [3] proposed a novel routing strategy that
uses DL architecture (i.e., Deep Belief Architectures (DBA))
to ensure an effective network routing. The proposed DBA

algorithm consists of multiple Restricted Boltzmann Machines
(RBM) layers, including an input layer that takes as input the
network data traffic observed at each router and one hidden
layer. First, the authors used a Greedy Layer-Wise scheme
to train the model. Then, they updated the values of weights
and biases using the gradient descent optimization method.
The authors evaluated their proposed routing strategy based
on the delay, throughput, and signaling overhead. Sharma et
al. [4] designed a novel ML-based approaches for network
routing, called MLProph. MLProph is an enhanced version
of a previous work, called PROPHET+ [5], a probabilistic
routing scheme for opportunistic networks. MLProph aims to
maximize the data delivery rate while minimizing the trans-
mission delay. For this aim, the authors used two ML-based
approaches, namely Neural Networks (NN) and Decision Trees
(DT); these ML-based approaches took as input a set of
parameters e.g., buffer capacity, number of successful deliv-
eries, and node popularity; while the output value indicates
whether a successful delivery is likely if transmitted on this
link. The authors evaluated their proposed routing strategy
based on delivery chance and average latency, outperforming
PROPHET+ in both metrics. However, the lack of up-to-date
training data, slow convergence, and low robustness due to the
dynamic change of the network topology and its complexity,
makes these AI-based routing systems [3]–[6] inefficient. To
address this problem, Reinforcement Learning (RL) has been
introduced to design more flexible and robust network routing
protocols.

kim et al. [7] proposed a novel deep reinforcement learning
(DRL)-based routing scheme suitable for SDN environment.
In the proposed solution, the DRL agent selects the optimal
route (i.e., set of link weights) that minimizes the packet
losses and the end-to-end delay of the network. To address
the problem of long learning process, the authors developed
an M/M/1/K queue-based network model and perform an
offline training of DRL. The authors evaluated their proposed
routing strategy in terms of the packet losses and the end-to-
end delay of the network; outperforming conventional hop-
count routing protocols in all these metrics. Younus et al.
[8] proposed a novel deep reinforcement learning (DRL)-
based routing scheme that includes energy efficiency-based
metrics as well as Quality-of-Service (QoS). The authors
evaluated their proposed routing strategy in terms of lifetime
and packet delivery ratio (PDR); outperforming energy-aware



SDN-based routing schemes in terms of lifetime (from 8%
to 33%) and packet delivery ratio (PDR) (from 2% to 24%).
Kato et al. [6] proposed a novel routing scheme that uses
supervised deep neural network to ensure an effective routing
in heterogeneous networks. Their proposed scheme uses the
history of the heterogeneous network traffic to route packets
in an adaptive manner. More specifically, the scheme takes
as input, the values of the number of packets transmitted by
each node, and gives as an output the whole path to final
destination (i.e., edge router). The proposed routing scheme
includes three phases. First, it uses the OSPF protocol to gather
network training data. Then, it trains using these data based on
greedy layer-wise and back-propagation approaches. Finally,
the inference model was used to select the whole routing path.
The authors evaluated their proposed routing strategy in terms
of signaling throughput, overhead, and average delay per hop,
outperforming the OSPF protocol in all these metrics.

Sun et al. [9] have studied the problem of Network Routing
in a Software Defined Networking (SDN) environment using
deep reinforcement learning (DRL) techniques. They proposed
ScaleDeep, a scalable DRL-based routing scheme for SDN
that allow for a flexible and robust network routing. The
proposed DRL-based algorithm adapts routing policies by
automatically adjusting the link weights of the driving nodes.
Their experiments results showed that the proposed scheme
reduces the flow time completion 36% with better robustness
to minor topology changes. Lin et al. [10] have proposed
a novel QoS-aware adaptive routing (QAR) scheme based
on a multi-layer hierarchical SDNs. The objective of their
proposed hierarchical control plane is to minimize signaling
delay in large SDNs via three-levels design of controllers.
Also, the authors have proposed a novel QAR algorithm that
uses reinforcement learning and QoS-aware reward function
to achieve an adaptive and time-efficient network routing. The
authors evaluated the performance of their proposed scheme
through extensive simulation using a Python-based in-house
simulator.

Although the implementation of DRL improves the ef-
ficiency/flexibility in traditional/AI-based routing schemes,
deploying DRL directly in a large-scale network requires a
large amount of policy space to exert control over all nodes
or routing flows [1], [11], [12]. This makes it difficult for the
DRL agent to converge to a stable state and achieve good
performance. The existing DRL-based routing schemes (e.g.,
[7]–[10]) are fully dependent on the network topology. If
the topology of a network undergoes a minor change (e.g.,
the addition or deletion of a link or node), the well-trained
DRL agent cannot use its acquired knowledge to serve the
new topology. Moreover, the amount of data (i.e., state-action
space) shared between agents can consume network bandwidth
and may slow down the process of training. In this paper, we
design a novel approach that combines Federated Learning
(FL) with Deep Reinforcement Learning (DRL) in order to
ensure an effective network routing in wireless environments.
First, we formalize the problem of network routing as a
problem of RL, where multiple agents that are geographically

distributed train the policy model in a fully distributed manner.
Thus, each agent can quickly obtain the optimal policy that
maximizes the cumulative its expected reward, while pre-
serving the privacy of each agent’s data. Experiments results
confirm that our proposed Federated Reinforcement Learning
(FRL) approach is robust and effective under different network
conditions.

The remainder of this paper is organized as follows. Section
II presents the design and specification of our proposed FRL
architecture for wireless networks. Section III presents the
performance evaluation of our proposed FRL. At last, section
IV concludes the paper.

II. FRL-ENABLED NETWORK ROUTING FOR WIRELESS
NETWORKS

In this section, we introduce the problem statement; then, we
detail our proposed solution and the mathematical formulation.

A. Problem Statement

We formalize the problem of network routing as a problem
of RL, where multiple agents actively interacting with an
environment (i.e., the wireless network) by executing a set of
actions (e.g., forward a packet). We assume an architecture
as shown in Fig. 1; it shows the system architecture of
our considered hierarchical wireless topology network. Our
proposed architecture consists of three tiers. In the lower
tier (i.e., the first level of the proposed architecture), we
consider a set of wireless nodes that are distributed in a
particular geographical area. The second level of the proposed
architecture is represented by multiple Base Stations (BSs:
A, B, C and D) (i.e., Cluster Head (CH)) that conduct local
training, where each CH covers a particular geographical area,
in which a set of wireless devices are already deployed.
Each node needs to make a similar decision task in its
observed environment (i.e., select the optimal route) with little
interaction with each others. A CH node is also responsible
for establishing the communication link between the first and
third levels. The upper tier (i.e., the third level of the proposed
architecture) is represented by an SDN controller, which is
responsible for aggregating local model updates. Our proposed
FRL-based algorithm includes two stages. First, the initial
route discovery; this stage corresponds to the initial training
of RL agents that is inspired by a reactive routing scheme to
find the initial route tables during the path discovery process
based on Route Request (RR) and Route Reply (RP) messages.
Then, the packet routing; this stage corresponds to the normal
operation of the routing algorithms, and corresponds to the
value estimation function based on RL, as well as the feedback
reward from the selected neighboring node.

B. Proposed Solution

In this paper, we aim to combine Federated Learning (FL)
with Reinforcement Learning (RL) in order to ensure an
effective network routing in wireless environment. There are
two common routing protocol techniques for wireless sensor
networks (WSNs). The first technique, called reactive, is an
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Fig. 1. The considered hierarchical wireless topology network

on-demand strategy, where a network route/path is created
upon an initial request from a source node to transmit a data to
a destination node. To this aim, a route discovery process (i.e.,
based on Route Request (RR) and Route Reply (RP) messages)
is initiated each time there is a data packet to be transmitted.
Once done, the established route became inactive; such routing
technique is suitable for WSNs, however it may introduce an
additional delay, since the path must be explored for each
packet transmission. The second technique, called proactive,
is a table-based strategy, where each node in the network
has information about all possible routes in its routing table.
Each node continuously updates such information by sending
control packets (route update). This technique can ensure the
flexibility and reduce transmission time delays, in comparison
with to the reactive one. However, as the overall size of the
network increases, the number of the route update messages
and the size of routing tables will grow exponentially, reducing
the overall performances (e.g., throughput) of the network. In
our proposed Federated Reinforcement Learning-based strat-
egy, we use a hybrid network routing technique, combining
reactive and proactive ones to allow for an efficient and flexible
network routing for WSNs, this will allow to take benefit of the
two techniques. The routing strategy is based on the estimated
reward value; in this work, we consider three types of rewards.
The first one is a negative reward strategy that is attributed
to a particular route upon an unsuccessful transmission. The
second one is a low reward strategy; a low reward value is

attributed to a particular route via a particular node when this
latter sends the ACK and successfully transmits the packet to
the destination, but the transmission time is high (i.e., bad
route). The third one is a high reward strategy, which means
that the selected node/neighbor, had generated the best path
towards the destination. In this work, we consider the end-to-
end delay (round trip time from the transmitter to the receiver).

C. Mathematical Formulation

In this section, we first present the mathematical formulation
of our studied problem. Then, we present our Federated
Reinforcement Learning- based Network routing strategy.

1) Markov Decision Process Formulation: A Markov de-
cision process (MDP) is a stochastic discrete process that
models decisions on the basis of a mathematical system,
characterized by the triplet (Sf , Af , Rf ) where Sf , Af , and
Rf indicate state, action, and the reward function of an agent
f , respectively. They are defined as follows: (1) state space:
can either be a packet that is successfully delivered to a desti-
nation, or the loss of a packet during transmission; (2) action
space: An action can be described as the decision (e.g., select
next-hop, drop the packet) reached by the agent after taking
into account the state of the environment; and (3) reward
function: A reward is defined as an incentive mechanism that
rewards/punishes an agent based on its performed action. In
our work, we have considered three types of rewards. The
first one is a negative reward strategy that is attributed to
a particular route upon an unsuccessful transmission. More



specifically, when a node sends a packet to the next hop
and does not receive an ACK message, we assign a negative
reward to the selected route via that node. The second one
is a low reward strategy; a low reward value is attributed
to a particular route via a particular node when this latter
sends the ACK and successfully transmits the packet to the
destination, but the transmission time is high (i.e., bad route).
The low reward strategy reduces the probability of choosing
bad nodes/neighbors. The third one is a high reward strategy,
which means that the selected node/neighbor, had generated
the best path towards the destination. The transition probability
from state st to st+1 is expressed as follows:

P (st+1|s1, . . . , st) = P (st+1 = j|st = i) = pi,j , (1)

where
∑n

j=1 pi,j = 1 ∀i = 1, . . . , n, where n is the number
of states.

We define the policy function as follows:

π(s|v) = P [At = a|St = s], (2)

where a is the action taken by an agent given a state s.
The agent can evaluate the action v using a state value

function, defined as follows:

νπ(s) = Eπ[

∞∑
t=0

γtrt+1|S = s],∀s ∈ S, (3)

where rt+1 is the reward value at the time t+1 and 0 < γ < 1
is a discount factor.

The agent tries to maximize the Cumulative Reward (CR)
defined as follows:

CR = max
π

E[
∞∑
k=0

γkr|S = s], (4)

The Q-learning can be used to estimate the quality of a
given state-action pair, as follows:

Qπ(s, a) =
∑
s′,r

P [s′, r|s, a]
(
r + γν(s′)

)
, (5)

where P [s′, r|s, a] and r represent the transition probability
from state s to state s′ and the obtained reward, receptively.
The Q-learning algorithm updates the function Q as follows:

Q(s, a)← Q(s, a) + α
(
r + γmax

a
Q(s′, a′)−Q(s, a)

)
(6)

where α, γ, s′, and a′ indicate the learning rate, the discount
factor, the next time step state and action taken, respectively.

Q-learning is a model-free algorithm that does not need to
know the environment model but estimates the Q-value of each
action performed in each state that the user encounters while
interacting with the environment. Q-learning uses a Q-table
to store expected rewards for a given state, which can be a
problem when a large number of states and actions of a single
agent or where multiple agents may be involved. DQN can
solve this issue; by using multiple neural layers. The agents
calculate the Q-vector (Q′) as follows:

Q = R+ γQ′; (7)

where R, γ, and (Q) are the agent reward vector, a discount
factor, and the targeted Q value, respectively.

The loss function to optimize is defined as:

L =
1

n

n∑
i=0

(Q(s, a)− r + γQ(s′, a′))2, (8)

where Q and Q′ are the approximated Q-value and the targeted
Q-value, respectively.

2) Federated Deep Reinforcement Learning: First, we for-
malize the problem of network routing as a problem of RL,
where multiple agents that are geographically distributed train
the policy model in a fully distributed manner. Each agent
independently executes routing actions (see Fig.1) based on
the current state of their environment and obtains positive
(successful transmission) or negative (unsuccessful transmis-
sion) rewards for evaluation. In contrast to RL, FRL keeps the
data locally, and learns a global model through the shared
parameters sent by the agents. This allows each agent to
quickly obtain the optimal policy that maximizes its cumu-
lative expected reward, while protecting each agent’s privacy.
In the FRL problem, we assume that N agents {F}Ni=1 can
observe their environment {E}Ni=1 with the objective to ensure
an efficient network routing. Let G be the collection of all
environments. Each environment {E}i of the ith agent has a
similar model i.e., state/action space and reward function. The
objective is to find the optimal global parameters of the model
as follows:

min
wr∈Rd

F (wr) where F (wr) =
1

N

N∑
i=1

Fi(wr), (9)

where N is the number of agents and Fi(wr) is the local
objective function for the ith collaborator at each round r.

Note that each environment {E}i is independent from the
others, in such a way that state/action space and reward
function of {E}i do not depend on state/action space and
reward function of other environments. Thus, the conditions
of FRL is presented as:

Si = Sj , Ai = Aj , Ei ̸= Ej∀i, j ∈ {1, 2, ..., N}; (10)

where Si and Sj are the same state space experienced by
the ith and jth agents, respectively; while Ai and Aj are
the same action space experienced by the ith and jth agents,
respectively, and Ei and Ej are the different independents
environments of the ith and jth agents, respectively.

III. PERFORMANCE EVALUATION

The implementation of our proposed FRL is done using
Pysyft [13], a generic library for privacy-aware deep learning,
built on top of PyTorch. Our test environment consists of
multiple agents (see BSs: A, B, C and D in Fig. 1) (i.e.,
Cluster Head (CH)) that conduct local training, where each
CH covers a particular domain, in which a set of wireless
devices are already deployed. Each node needs to make a
similar decision task in its observed environment (i.e., select
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Fig. 2. Model loss for (a) 10 rounds; and (b) 25 rounds.
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Fig. 3. Total rewards for (a) 10 rounds; and (b) 25 rounds.

the optimal route). We have varied the number of training
rounds and local epochs from 10 to 25 and from 1 to 5,
respectively. Figs. 2(a) and 2(b) show the training curves of
the trained models over the rounds; they show the negative
log likelihood loss values, respectively, during training and
testing phases. We observe that the agent’s loss decreases
until it reaches a minimum (almost zero), which indicates that
agents are capable of learning from each other while protecting
each one privacy. Figs. 3(a) and 3(b) show the convergence of
our proposed FRL algorithm over 10 rounds and 25 rounds,
respectively. They show the cumulative average rewards per
training rounds. We observe that the average reward improves
as the training rounds increase, until it reaches the maximum,
after only two rounds of federated training.

IV. CONCLUSION

In this paper, we have designed a novel approach that
combines Federated Learning (FL) with Reinforcement Learn-
ing (RL) in order to ensure an effective network routing in
wireless environments. Our proposed FRL allows multiple
agents to collaborate in order to learn a shared policy in a fully
distributed manner. Thus, each agent can quickly obtain the
optimal policy that maximizes the cumulative expected reward,
while preserving the privacy of each agent’s data. Results
showed that our proposed Federated Reinforcement Learning
(FRL) approach is robust and effective while protecting each
agent’s privacy.
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