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Abstract—Software-defined network (SDN) is widely deployed
on Smart Grid (SG) systems. It consists in decoupling control
and data planes, to automate the monitoring and management
of the communication network, and thus enabling zero touch
management of SG systems. However, SDN-based SG is prone
to several security threats and varios type of new attacks. To
alleviate these issues, various Machine/Deep learning (ML/DL)-
based intrusion detection systems (IDS) were designed to improve
the detection accuracy of conventional IDS. However, they suffer
from high variance and/or bias, which may lead to an inaccurate
security threat detection. In this context, ensemble learning is
an emerging ML technique that aims at combining several ML
models; the objective is to generate less data-sensitive (i.e., less
variance) and more flexible (i.e., less bias) machine learning
models. In this paper, we design a novel framework, called
BoostIDS, that leverages ensemble learning to efficiently detect
and mitigate security threats in SDN-based SG system. BoostIDS
comprises two main modules: (1) A data monitoring and feature
selection module that makes use of an efficient Boosting Feature
Selection Algorithm to select the best/relevant SG-based features;
and (2) An ensemble learning-based threats detection moel that
implements a Lightweight Boosting Algorithm (LBA) to timely
and effectively detects SG-based attacks in a SDN environment.
We conduct extensive experiments to validate BoostIDS on top
of multiple real attacks; the obtained results using NSL-KDD
and UNSW-NB15 datasets, confirm that BoostIDS can effectively
detect/mitigate security threats in SDN-based SG systems, while
optimizing training/test time complexity.

Index Terms—Smart Grid; Software-defined network; Intru-
sion detection systems; Ensemble Learning.

I. INTRODUCTION

Smart Grid (SG) is rapidly growing as the future of power
systems [1]. SG introduces and deploys a large number of
intelligent equipment, exchanging and processing both real-
time critical information and huge amounts of data. SG is
expected to deal with the dynamic availability of power as
well as dynamic users’ demands, that need uninterrupted
availability of the network communication [2]. Hence, the
design of novel platforms optimizing both network and power
management for the SG system is more than required.
In this context, Software-defined network (SDN) emerged as
promising solution for dynamically monitoring, managing,
and configuring the communication networks of SG. SDN
decouples the control plane from the data plane, enabling the

network control to become directly programmable. Moreover,
advanced Machine/Deep learning (ML/DL) algorithms are
leveraging the huge amount of generated data, in SDN-based
SG, to enable zero touch management of the SG systems [3].
For instance, ML/DL algorithms may analyze power data from
SDN-based SG system to study electricity consumption behav-
ior of users and improve then power equipment management
accordingly.
SDN-based SG is prone to several security threats and may
bring two main risks [4]. First, the deployed software in
its control plane may contain vulnerabilities. Second, the
SDN controllers are subject to distributed denial of services
(DDoS) attacks and single-point failures, e.g., compromised
SDN switches can be manipulated to flood SDN controllers’
resources. Although the security of the SDN has been widely
investigated in different network contexts [5]–[29]. However,
it is also essential to study its security on top of specific
requirements of SG system. For instance, malicious redirection
of control data flow through a high-latency path may be
valid for some delay-tolerant networks, but may degrade the
operational quality of a SG system. To deal with these is-
sues, various Machine/Deep learning (ML/DL)-based intrusion
detection systems (IDS) were designed, to optimize/enhance
the accuracy of conventional IDS. However, ML/DL-based
IDSs are mostly based on highly complex models with a large
number of features. Thus, they can suffer from high variance
and/or bias, which may lead to an inaccurate/inconsistent
detection of new emerging security threats. In this context,
ensemble learning is an emerging machine learning technique
which aims at combining several learning; the objective is
to generate less data-sensitive (i.e., less variance) and more
flexible (i.e., less bias) machine learning models [30].
In this work, we develop a new framework, called BoostIDS,
that leverages ensemble learning to efficiently detect and
mitigate security threats in SDN-based SG system. BoostIDS
comprises two main modules: (1) Data monitoring and feature
selection module to gather data and select the most impor-
tant/informative features, in order to optimize training/test
time complexity; and (2) Ensemble learning-based threats
detection module that implements a Lightweight Boosting Al-
gorithm (LBA). We conduct extensive experiments to validate



BoostIDS on top of multiple real-world security threats; the
obtained results, using NSL-KDD [31] and UNSW-NB15 [32],
[33], confirm that BoostIDS can effectively detect/mitigate
security threats in SDN-based SG systems, while optimizing
training/test time complexity.

The remainder of this paper is organized as follows.
Section II provides a comprehensive review of the related
work. Section III presents the design and specification of the
BoostIDS. Section IV presents the performance evaluation of
BoostIDS. At last, section V concludes the paper.

II. RELATED WORK

The new cyber-attacks (i.e., zero-day attacks) continue to
grow at a rapid pace and are becoming increasingly dev-
astating. In the following, we provide an overview of the
most prominent state-of-the-art solutions. Moudoud et al.
[34] proposed a new Artificial Intelligence (AI)-based attack
detection process that uses a hidden Markov model (HMM)
to detect false data injection (FDI) attacks in the Internet
of Things (IoT) system. The proposed process covers both
detection and prediction of FDI attacks; it also includes a
reputation and punishment-based trust management scheme to
establish trust among IoT devices. The authors have shown
that their proposed scheme outperforms the state-of-the-art
contributions in terms of detection accuracy while reducing
latency. Marir et al. [35] developed a distributed approach
that uses multilayer support vector machines (SVMs) to detect
anomalous behaviors in the network. Their proposed approach
includes two steps. The first step uses a deep belief network
to reduce the input features dimensionality; the objective is
to select the best features. Once this selection is done, the
second stage uses the best features to train a multi-layer SVM
to perform efficient detection of abnormal behaviors in the
network. The authors demonstrated the efficiency of their
approach using four well-known datasets, namely, KDD’99,
NSL-KDD, UNSW-NB15, and CICIDS2017. Tufan et al. [36]
developed a network anomaly detection scheme based on two
ML models, namely a convolutional neural network (CNN)
and an ensemble learning model. The authors demonstrated
the efficiency of their approach using an institutional dataset,
namely UNSW-NB15. Nour et al. [37] developed a novel
attack detection approach based on three common ML models,
namely Decision Tree (DT), Naive Bayes (NB), and AI neu-
ral network to detect cyber attacks (i.e., malicious/abnormal
events) in IoT networks, including Domain Name System
(DNS) and Message Queue Telemetry Transport (MQTT)
based attacks. In particular, the authors developed a new com-
plete learning model, called AdaBoost, based on the three ML
models to evaluate the impact of such features and effectively
detect malicious/abnormal events. The authors demonstrated
the efficiency of their approach using two UNSW-NB15 and
NIMS botnet datasets. Upadhyay et al. [38] developed a
novel attack detection framework called Recursive Feature
Elimination-eXtreme Gradient Boosting (RFE-XGBoost) suit-
able for SCADA (Supervisory Control and Data Acquisition)
systems. RFE-XGBoost has two steps; first, it uses a Weighted

Feature Importance (WFI) scheme to identify the features
that are most useful. Afterwards, it gives these important
features to a Majority Vote Ensemble Algorithm that consists
of three bagging methods along with ANN, NB, and k-nearest
neighbors (KNN) for end-to-end final intrusion detection. The
authors evaluated the effectiveness of RFE-XGBoost using
Receiver Operating Characteristic (ROC) curves, Precision,
and Recall metrics.

Tama et al. [39] proposed a novel ML scheme that uses
Rotation Forest along with Bagging techniques to detect
malicious activities in the network. First, the authors use a
hybrid feature selection scheme based on swarm optimization,
genetic algorithm, and ant colony scheme to identify the
features that are most useful; the objective is to reduce the
error pruning tree (REPT). The authors demonstrated the
feasibility of their approach using UNSW-NB15 and NSL-
KDD datasets. Alkadi et al. [40] proposed an efficient deep
blockchain framework (DBF) that uses a blockchain smart
contract and a bidirectional long-term memory deep learning
(BiLSTM) algorithm to ensure IoT network security. DBF uses
the Ethereum smart contract to preserve privacy in a distributed
IDS. The authors demonstrated the feasibility of their approach
using two well-known datasets, namely UNSW-NB15 and
BoT-IoT. Gao et al. [41] developed a novel framework based
on EL to detect network attacks on a cloud-based robotic
system. First, the authors construct an EL system using labeled
data (i.e., NSL-KDD). Then, they used a fuzzy-based scheme
to efficiently utilize the unlabeled data. Thus, the proposed
system includes both supervised and unsupervised techniques.
The authors demonstrated the effectiveness of their approach
using the well-known dataset, namely NSL-KDD. Seth et al.
[42] developed an effective attack detection framework that
combines multiple ML models to detect Network attacks in
a multi-attack classification environment. To address the issue
of imbalanced classes; the authors use a hybrid approach in-
volving SMOTE and under-sampling techniques. The authors
demonstrated the effectiveness of their approach using the
well-known dataset, namely CIC-IDS 2018. Li et al. [43] de-
signed a novel sustainable EL scheme based on an incremental
learning process for multi-class regression models to detect
abnormal/malicious behavior in the network. The authors
demonstrated the feasibility/effectiveness of their approach
using the well-known dataset, namely NSL-KDD. Al-Abassi et
al. [44] have proposed a new framework suitable for industrial
control systems (ICS) that uses a deep neural network (DNN)
and a decision tree (DT) to detect cyber attacks. The authors
demonstrated the effectiveness of their approach based on 10-
fold cross-validation using two well-known ICS datasets. Gao
et al. [45] designed an adaptive EL framework that leverages
common ML models, including, Logical Regression (LR),
and DNN to detect network attacks/anomalies. The authors
demonstrated the feasibility/effectiveness of their approach
using NSL-KDD dataset.

According to our analysis of these contributions, we have
noticed that some of these solutions is based on a single
learner, such as SVM and RF, to detect cyber attacks in the



network. First, these systems suffer from a problem of poor
generalization, as they fail to generalize to unseen attacks
such as ”zero day” attacks. Moreover, it is challenging for
only a single learner to handle the task to effectively detect
all types of attacks, especially with the large amount of data
generated, which my lead of over-fitting issues. To overcome
the weaknesses of such existing solutions, we propose a novel
framework that utilizes advanced boosting techniques to build
more robust and less data-dependent ML/DL based IDSs (i.e.,
less bias and less variance).

III. LIGHTWEIGHT ADAPTIVE BOOSTING ALGORITHM:
ENSEMBLE LEARNING-BASED FRAMEWORK FOR

INTRUSION DETECTION IN SDN-BASED SMART GRID

In this section, we describe our BoostIDS framework along
with its main modules. First, we briefly describe our proposed
BoostIDS architecture. Then, we present our data monitoring
and feature selection module. Finally, we highlight our En-
semble learning-based threats detection module.

A. System Architecture

Our BoostIDS framework is built on top of an architecture,
comprising three main planes(see Fig. 1):

1) End-users plane in terms of power devices that are
managed by the smart grid to provide their required
energy in real-time. It is clear that the generated data
at this level can be leveraged to enable several ML/DL-
based applications at application plane.

2) SDN plane including control plane that is composed of
SDN controllers, or the brain of the SDN plane. SDN
controllers are in charge of determining the potential
data-paths, based on the SDN application requirements.
Besides, SDN plane contains also a data plane in charge
of forwarding data flows based on already defined and
configured rules at the SDN control plane. Both con-
trol and data planes can communicate with each other
through an hypervisor, which is in charge of translating
control flows to data-paths.

3) Application plane to provide several applications for
managing effectively power production, distribution, and
consumption. Various applications may be implemented
at this level, including how the end-users behave in
terms of power consumption. This helps also to optimize
the energy production and distribution as well as the
management of the provider power devices. Noting that
these applications may also leverage ML/DL algorithms
and exploit generated data at the SDN plan to build
efficient Data-driven models.

On top of this architecture, we aim to build a new ensemble
learning-based intrusion detection framework. Our framework
can be deployed as an application at the application plane,
in order to secure the whole SDN-based smart grid system
against various threat, especially those related to the central-
ized SDN plane.

B. Data Collection and Feature Selection

When designing our framework (i.e., BoostIDS), we have
taken into consideration the following goals/objectives. First,
BoostIDS must provide a complete protection of the SDN-
based smart grid system against new emerging attacks. Second,
these attacks need to be quickly and accurately recognized.
Finally, the entire SDN-based smart grid system should be as
robust and secure as possible. BoostIDS includes two mod-
ules. The first module enables efficient data collection from
electrical devices managed by the smart grid; it makes use of
an efficient Boosting Feature Selection Algorithm to select the
best/relevant (i.e., most informative) SG-based features. The
second module includes a Lightweight Boosting Algorithm
(LBA) to timely and effectively detects SG-based attacks in a
SDN environment.

Data collection: In a SDN-based Smart Grid environment,
Open-Flow protocol (OF) is used collect data from a large
number of electrical devices (i.e., End-users) managed by
the smart grid; the objective is collect data (e.g., number of
flows per ingress port) for analyzing and detecting threats.
OF-based technique depletes the memory of the end devices;
also it exhausts the OF channel between the control plane
and the data plane with attack traffic; which makes this
technique unable to effectively detect high-throughput attacks.
To address the challenges of OF-based technique, we use a
flow sampling technique from a large number of electrical
devices in a scalable and effective manner; our data collection
method used sFlow and will not consume any bandwidth
between data plane and SDN plane and does not exhaust
the OF channel with attack traffic and it monitors high-speed
traffic and has the ability to monitor networks at 100 Gbps
and beyond. Once the SG-based data is collected/gathered,
we encode the non-numeric/categorical data into numerical
values using two encoding techniques, namely label and one
hot encoding techniques. Once done, we re-scale the selected
feature values using a normalization technique as follows:

F̂ =
Fj − µ

σ
(1)

where Fj denotes the collected feature, while σ and µ are the
standard deviation and mean value of the collected feature,
respectively.

Description of Datasets: In our study, we use NSW-NB15
and NSL-KDD datasets; these datasets inculdes the main
real SG-based attacks, including fuzzers (24246 Attack data
samples), DDoS (16353 Attack data samples), analysis (2677
Attack data samples), reconnaissance (13987 Attack data sam-
ples), backdoors (2329 Attack data samples), and others; NSL-
KDD, an enhancement of the conventional KDD’99 dataset,
contains the main real-world SG-based attacks e.g.,, Probe
(Probing) and Distributed Denial of Service (DDoS).

Boosting Feature Selection: This module makes use of
an efficient Boosting Feature Selection Algorithm to select
the best/relevant (i.e., most informative) SG-based features;
it ranks the features according to an importance score that
indicates the relevance of a feature in classifying attacks. The
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Fig. 1. Overview of our BoostIDS Architecture.

more valuable a feature is for building an optimal tree, the
more valuable its score is.

For a given DT , a relevance measurement for the ith feature
fi is calculated as follows:

BFSi(DT ) =

K−1∑
k=1

î2t I(fk = i) (2)

where i is the number of internal nodes and î2 is an estimation
of the loss error function.

Then, the average significance of features is computed over
all the DT for boosting as follows:

BFSi =
1

N

J∑
j=1

BFSi(Tj) (3)

where J is the number of trees.

C. Ensemble Learning-based Threats Detection

Our Ensemble Learning-based Threats Detection is a novel
variant of boosting techniques that uses gradient descent
process to find optimal values (ẑ) minimizing a loss function,
defined as follows:

L = − 1

K

K∑
k=1

zk ∗ log(ẑk) (4)

where zk is the actual value of the kth output class, ẑk is
the estimated value for kth class, and K is the number of the
samples of the data.

We start by setting the model with a constant value as
follows:

M0(s) = argmin
Θ

K∑
k=1

L(zk,Θ) (5)

where K is the number of the samples of the data
(i.e., {(sk, zk)}Kk=1), while Θ is the estimated value.

Afterwards, we calculate pseudo-residuals for kth data point
at iteration i as follows:

rki = −[
∂L(zk,M(sk))

∂(M(sk))
]M(s)=Mi−1(s) (6)

Then, we fit the weak learner wi(s) to pseudo-residuals and
we compute the output value at iteration i as follows:

Θi = argmin
Θ

K∑
k=1

L(zk,Mi−1(sk) + Θwi(sk)) (7)

To find the optimal/best value of Θ that optimize the loss
function, we use a second-order Taylor polynomial approxi-



mation as follows:

Li ≃
K∑

k=1

[L(zk,Mi−1(sk)) + gkwi(sk)

+
1

2
hkwi(sk)

2] +
1

2
Λ

N∑
n=1

Θ2j

where gk = ∂L(zk,M(sk)) and hk = ∂2L(zk,M(sk)) are
first and second order gradient of the loss function, where Λ
is a regularization parameter, and N is the total number of
leaves in the tree.

Then, we calculate the value of Θ at iteration i as follows:

Θi = −
∑K

k=1 gkwi(sk)∑K
k=1 hkwi(sk) + Λ

(8)

Lastly, we then update the resulting model at the i iteration
as follows:

Mi(s) = Mi−1(s) + Θiwi(sk) (9)

The following algorithm summarizes the main process of
our ensemble learning-based threat detection (i.e., Lightweight
Boosting Algorithm (LBA)).

Algorithm 1 Lightweight Boosting Algorithm (LBA)
Input: Sequence of K data points {(sk, zk)}, k = 1, ...,K
A loss function L(z,M(s))
Init the model with M0(s) = argminΘ

∑K
k=1 L(zk,Θ)

for i ←1 to T do
Calculate rki = −[∂L(zk,M(sk))

∂(M(sk))
]M(s)=Mi−1(s)

Fit a weak learner wi(s) to pseudo-residuals
{(sk, rki)}Kk=1

Calculate optimal Θi by solving:
Θi = argminΘ

∑K
k=1 L(zk,Mi−1(sk) + Θwi(sk))

Update the model as follows:
Mi(s) = Mi−1(s) + Θiwi(sk)

end
Output the final Model MT (s) for final attack detection

IV. PERFORMANCE EVALUATION

A. Parameter Settings

To test the effectiveness of our proposed framework, Boost-
IDS, we emulate a real realistic/real-network environment
by using a popular SDN emulator tool, called Mininet [46].
Mininet uses virtual OF switches and containers to create a
realistic/real-network virtual environment. We use Floodlight
controller [47] to implement our Lightweight Boosting Algo-
rithm (LBA). Finally, we use sFlow-RT [48]) to collect/gather
the features of SG-based network in a efficient/scalable man-
ner.

Figs. 2(a) and 2(b) show the most relevant/important fea-
tures on UNSW-NB15 and NSL-KDD datasets, respectively;
it shows the features with the highest scores in a descending
order. We notice that higher than 80% and 85% of the collected

TABLE I
PERFORMANCE METRICS OF BOOSTIDS AND STATE-OF-THE-ART ML/DL

MODELS USING UNSW-NB15 DATASET

Methods Accuracy Precision Recall F1 Time
(second)

ENS-SVM
[35]

0.98 0.9 0.97 0.93 N/A

CNN [36] 0.99 0.9 0.97 0.95 N/A
ENS-STA
[37]

0.98 0.9 0.97 N/A 145

TSE-IDS [39] 0.85 0.87 0.88 N/A N/A
OGM [49] 0.95 0.94 N/A N/A N/A
BoostIDS 0.99 0.99 0.99 0.99 60

TABLE II
PERFORMANCE METRICS OF BOOSTIDS AND STATE-OF-THE-ART ML/DL

MODELS USING NSLKDD DATASET

Methods Accuracy Precision Recall F1 Time
(second)

CharCNN-
IDS [50]

0.85 0.91 0.81 0.86 N/A

ResNet50
[51]

0.79 0.91 0.69 0.79 N/A

GoogleNet
[51]

0.77 0.91 0.65 0.76 N/A

Adaboost
[52]

0.85 0.86 0.85 0.84 N/A

BoostIDS 0.86 0.96 0.87 0.87 14

input features of the UNSW-NB15 and NSL-KDD datasets,
respectively, do not contribute to accurate decisions (i.e.,
SG-based attack classification). Thus, our proposed Boosting
Feature Selection scheme can largely eliminate unnecessary
features that may delay the learning process, making it an
effective scheme to keep only the relevant features that can
assist the model in making accurate decisions. Figs. 3(a)
and 3(b) show the Log Loss of BoostIDS for UNSW-NB15
and NSLKDD datasets, respectively. We notice that both the
training as well testing losses values decrease, in UNSW-NB15
and NSLKDD datasets, until they reach almost zero for the
UNSW-NB15 dataset and a point of stability for the NSLKDD
dataset; this indicates that the model is learning efficiently.

B. Results and Discussions

To test the effectiveness of BoostIDS, we use several
metrics, including, detection rate (DR), Accuracy, Precision,
and F1-score. Also, we study the performance of BoostIDS
using ROC curves and confusion matrices. Figs. 5 and 6 show
the confusion matrices and the ROC curves of BoostIDS on
UNSW-NB15 and NSLKDD datasets, respectively. Tables 1
and 2 and shows the detailed performance of BoostIDS and
state-of-the-art contributions for UNSW-NB15 and NSLKDD
datasets, respectively. BoostIDS performs best in both datasets
and outperforms the Machine/Deep learning (ML/DL)-based
intrusion detection systems/models in both datasets. In UNSW-
NB15 dataset, BoostIDS achieves 99% in Accuracy, detection
rate, F1-score, and Precision with only 60s of training; while
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Fig. 2. Feature importance scores on: (a) UNSW-NB15 and (b) NSL-KDD.
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Fig. 3. Model loss of BoostIDS for: (a) UNSW-NB15 and (b) NSL-KDD.

BoostIDS achieves 86% in Accuracy, 87% in detection rate,
96% in Precision, and 87% in F1-score with only 14s of train-
ing for NSLKDD dataset. The experimental results confirm
that BoostIDS has better Precision, Accuracy, F1-score, and
detection rate than existing Machine/Deep learning (ML/DL)-
based intrusion detection systems.

V. CONCLUSION

In this paper, we designed a novel framework, called
BoostIDS, that leverages ensemble learning to efficiently de-
tect and mitigate security threats in SDN-based SG system.
BoostIDS comprises two main modules: (1) Data monitoring

and feature selection that makes use of an efficient Boosting
Feature Selection Algorithm to select the best/relevant (i.e.,
most informative) SG-based features; and (2) An ensemble
learning-based threats detection that implements a Lightweight
Boosting Algorithm (LBA) to timely and effectively detects
SG-based attacks in a SDN environment; the obtained results,
using NSL-KDD and UNSW-NB15 datasets, confirmed that
BoostIDS can effectively detect/mitigate security threats in
SDN-based SG systems, while optimizing training/test time
complexity. This makes BoostIDS a very prominent cyberse-
curity framework to mitigate more advanced and sophisticated
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attacks.
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programmables,” Ph.D. dissertation, Université de Montréal, 2021.
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